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Abstract The paper presents a new approach for the modeling, analysis and design of automatic

control systems in fully fuzzy environment based on the normalized fuzzy matrices. The approach is

also suitable for determining the propagation of fuzziness in automatic control and dynamical sys-

tems where all system coefficients are expressed as fuzzy parameters. A new consolidity chart is sug-

gested based on the recently newly developed system consolidity index for testing the susceptibility of

the system to withstand changes due to any system or input parameters changes effects.

Implementation procedures are elaborated for the consolidity analysis of existing control systems

and the design of new ones, including systems comparisons based on such implementation consolid-

ity results. Application of the proposed methodology is demonstrated through illustrative examples,

covering fuzzy impulse response of systems, fuzzy Routh–Hurwitz stability criteria, fuzzy con-

trollability and observability. Moreover, the use of the consolidity chart for the appropriate design

of control system is elaborated through handling the stabilization of inverted pendulum through

pole placement technique. It is also shown that the regions comparison in consolidity chart is based

on type of consolidity region shape such as elliptical or circular, slope or angle in degrees of the

centerline of the geometric shape, the centroid of the geometric shape, area of the geometric shape,

length of principal diagonals of the shape, and the diversity ratio of consolidity points for each

region. Finally, it is recommended that the proposed consolidity chart approach be extended as

a unified theory for modeling, analysis and design of continuous and digital automatic control sys-

tems operating in fully fuzzy environment.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The majority of the applications of fuzzy theory to automatic
control systems are basically directed toward the development

of fuzzy logic controllers (FLCs) for linear and nonlinear sys-
tems with given or unknown systems’ models [1–5]. A wide
class of these controllers constitutes several components

namely the rule-base engine, the fuzzification process, the
inference mechanism and the defuzzification process. To avoid
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Fig. 1 Two examples of continuous and digital data control

systems operating in fuzzy environments.
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defuzzification ambiguities which may arise from more than
one crisp output value, some weighted-based techniques are
commonly used such as the averaging, the center of gravity

(centroid), or the root-sum-square methods [6–9]. Other
FLCs are based on the conventional fuzzy control (Mamdani
Type fuzzy control), fuzzy PID control, neuro-fuzzy control,

fuzzy sliding-mode control, adaptive fuzzy control, supervi-
sory fuzzy control, and the Takagi and Sugeno (T–S) model-
based fuzzy control [10–15].

An important aspect that goes along with the development
of FLCs is the solution of the general modeling and analysis
aspect of automatic control systems operating in fully fuzzy
environment. This is the general case where all inputs and sys-

tem parameters are fuzzy variables. Two typical examples of
linear control systems for the continuous and digital data cases
are shown in Fig. 1. There is a definite need to extend the

development of all well proven techniques and methodologies
of the deterministic case to the full fuzziness situation. The
extension should allow the systematic calculations of propa-

gated fuzziness inside the control system of different config-
urations and representations.

The modeling and analysis of automatic control systems

operating in fully fuzzy environment is not effectively solved
in the literature [16–18]. There are many approaches that are
carried out to handle this problem using the conventional
fuzzy theory. These approaches suffer many drawbacks such

as the processing of the solution becomes very cumbersome
with the increase of system dimensionality. Moreover, the
results obtained by such like approaches are not linear and

thus not reversible, leading to that the results obtained in the
forward path will be different than the backward path [19,20].
Other techniques, using the direct implementation of fuzzy

matrices, also have many shortcomings [21–23]. The main hin-
drance of their spread is heavily related to their impracticabil-
ity of their present operations (Max, Min, Max.Min, and

Min.Max) as they do not reflect any corresponding real-life
physical meanings and cause irreversibility and nonlinearity
in their processing.

Gabr and Dorrah presented their new notion of Arithmetic

and Visual fuzzy logic-based representations [24–30]. The
approach was based on the normalized fuzzy matrices, where
every parameter is expressed by its value and corresponding

fuzzy level. It is shown by Gabr [29,30] that the proposed
Arithmetic fuzzy logic-based representation has corresponding
mathematical functions with the conventional fuzzy theory.

However, the new approach provides a much easier arithmetic
rather than logic calculations forum that makes its application
much practical and effective. Reported methodological experi-
mentations and case studies applications of the Arithmetic and

Visual fuzzy logic-based representations were successful in
solving some preliminary classes of fuzzy global optimization
and operations research techniques [24–28].

Such fuzziness approach has resulted in the appearance of a
new system index named as ‘‘system consolidity index’’.1

Consolidity (the act and quality of consolidation) is measured

by the systems output reactions versus combined input/system
parameters reaction when subjected to varying environments
1 Consolidity could be regarded as a general internal property of

physical systems that can also be defined far from fuzzy logic or rough

sets. Other consolidity indices, however, could be defined by

researchers but the concept will still remain the same.
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and events [31–36]. Moreover, consolidity can govern the abil-
ity of systems to withstand changes when subjected to incur-
ring events or varying environments ‘‘on and above’’ normal

operation during the system change pathway.
Though the topic of consolidity theory has commenced

recently in year 2010, there are some good applications of
such theory for the analysis and design of automatic control

theory. In such applications, the opposite relationship
between consolidity and both stability and controllability of
state space representation systems was investigated in [33].

Moreover, several examples of applications to automatic con-
trol systems were carried out such as the fuzzy design of
inverted pendulum using pole replacement method, the opti-

mal design of the fuzzy linear quadratic regulator problem,
and the fuzzy Lyapunov stability analysis of the drug concen-
tration control problem [35]. In all these applications, the

overall values of consolidity index (average of calculated
consolidity points) are only considered in the study without
going into any further investigations of the geometric dis-
tributions or the diversity analysis of the various consolidity

points.
In the following section, the implementation of the

consolidity theory is elaborated for further use in the analysis

and design of control systems.

2. Methodology development

2.1. Description of the operating fuzzy environments

The fuzzy environments used in system consolidity analysis
could be classified as shown in Table 1, and their representa-
tions are elucidated in Fig. 2.

In order not to complicate the mater unduly in this paper,
our analysis will be based on classes EO and EB. The system
consolidity analysis applies similarly to other fuzzy environ-
ment classes.
odeling, analysis and design in fully fuzzy environment, Ain Shams Eng J (2015),
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Table 1 Various classifications of fuzzy environments for consolidity analysis.

Ser. Class name Class

abbreviation

Description

1 Open fully fuzzy

environment

EO It is open fully fuzzy environment where all fuzzy levels can equally change all over the

positive and negative values of the environment

2 Conditionally open fully

fuzzy environment

EC It is an open fully fuzzy environment but it has the following conditions:
(i) The changes of fuzzy levels of parameters may be correlated, and/or

(ii) The fuzzy levels may have certain possibility of occurrence similar to Type-2 Fuzzy

algebra.

3 Bounded fully fuzzy

environment

EB It is a restricted fully fuzzy environment where all fuzzy levels can equally change all over

the positive and negative within restricted ranges in the environment

4 Partial fuzzy environment EP It is a restricted partial fuzzy environment where only some fuzzy (or none fuzzy) levels can

differently or conditionally change within restricted ranges in the partial environment

CEOE

PEBE

Fig. 2 Various classifications of different fuzzy environments.

A new approach for automatic control modeling, analysis and design in fully fuzzy environment 3
2.2. The consolidity methodology

The consolidity methodology for the analysis and design of
control systems is based in modeling the system input and
parameters as fuzzy variables, leading to a corresponding out-

put of the similar fuzzy nature. A system operating at a certain
stable original state in fully fuzzy environment is said to be
consolidated if its overall output is suppressed corresponding

to their combined input and parameters effect, and vice versa
for unconsolidated systems. Neutrally consolidated systems
correspond to marginal or balanced reaction of output, versus

combined input and system.
In general, the output fuzziness behavior toward input

fuzziness could differ from one system to another. Examples
of these behaviors are as follows:

(i) Outputs could absorb the input fuzziness and give smal-
ler or diminishing output fuzziness.

(ii) Outputs could yield almost the same level of input
fuzziness.

(iii) Output could give higher output fuzziness compared to

input fuzziness.

Let us assume a general system operating in fully fuzzy
environment, having the following elements:

Input parameters:

I ¼ ðVIi ; ‘IiÞ ð1Þ

such that VIi ; i ¼ 1; 2; . . . ;m describe the deterministic value

of input component Ii, and ‘Ii indicates its corresponding fuzzy
level.

System parameters:

S ¼ ðVSj ; ‘SjÞ ð2Þ

such that VSj ; j ¼ 1; 2; . . . ; n denote the deterministic value of

system parameter Sj, and ‘Sj denotes its corresponding fuzzy

level.
Output parameters:

O ¼ ðVOi
; ‘Oi
Þ ð3Þ

such that VOi
; i ¼ 1; 2; . . . ; k designate the deterministic value

of output component Oi, and ‘Oi
designates its corresponding

fuzzy level.
We will apply in this investigation, the overall fuzzy levels

notion, first for the combined input and system parameters,

and second for output parameters. As the relation between
Please cite this article in press as: Gabr WI, A new approach for automatic control mo
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combined input and system with output is close to (or of the
like type) of the multiplicative relations, the multiplication

fuzziness property is applied for combining the fuzziness of
input and system parameters.

For the combined input and system parameters, we have

the weighted fuzzy level to be denoted as the combined Input

and System Fuzziness Factor FIþS, given as:

F1þS ¼
Pm

i¼1VIi � ‘IiPm
i¼1VIi

þ
Pn

j¼1VSj � ‘SjPn
j¼1VSj

ð4Þ

Similarly, for the Output Fuzziness Factor FO, we have

FO ¼
Pk

i¼1VOi
� ‘OiPk

i¼1VOi

ð5Þ

Let the positive ratio jFO=FIþSj defines the
SystemConsolidity Index, to be denoted as FO=ðIþSÞ. Based on

FO=ðIþSÞ the system consolidity state can then be classified as

[20–33]:
deling, analysis and design in fully fuzzy environment, Ain Shams Eng J (2015),
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(i) Consolidated if F O=ðIþSÞ < 1, to be referred to as ‘‘Class

C’’.

(ii) Neutrally Consolidated if F O=ðIþSÞ � 1, to be denoted by

‘‘Class N’’.
(iii) Unconsolidated if F O=ðIþSÞ > 1, to be referred to as ‘‘Class

U’’.

For cases where the system consolidity indices lie at both
consolidated and unconsolidated parts, the system consolidity

will be designated as a mixed class or ‘‘Class M’’.
The selection of the fuzzy levels testing scenarios for both

the system and input should follow the same usual considera-
tion. First of all the input and system fuzzy values for system

consolidity testing are selected as integer values to be prefer-
ably in the range ±8 for open fuzzy environment and in the
range ±4 for bounded fuzzy environments. Nevertheless, the

output fuzzy level could assume open values beyond these
ranges based on the overall consolidity of the system.
However, all over implementation procedure in the paper,

the exact fraction values of fuzzy levels are preserved during
the calculations and are rounded as integer values only at
the final results [34].

It is remarked that the typical ranges of the consolidity
indices FO=ðIþSÞ based on previous real-life applications are as

follows: very low (<0.5), low (0.5–1.5), moderate (1.5–5), high
(5–15), and very high (>15) [34,35]. A good practical consoli-

dated system should have the value of consolidity index
FO=ðIþSÞ 6 1:5.

2.3. The consolidity chart

The concept of implementing the consolidity theory to the
analysis and design of control system is to plot for each system
its consolidity chart defined as the relation between the Output

Fuzziness Factor jFOj in the vertical axis (y) and the Input and

System Fuzziness Factor jFIþSj in the horizontal axis (x).
The best way for sketching each system’s region in the

consolidity chart is to calculate representative points of output

fuzziness factor (y-axis) versus input and the system fuzziness

factor (x-axis) and plot all these x–y points first in the chart.

The average consolidity index is then calculated based on these

points and its value will represent the slope of the center line of

the region under study. The boundary of the region can then

be sketched around this center line embodying all (or the

majority) of these fuzziness x–y points.
Examples of the consolidity regions or patterns of various

consolidity classes are summarized in Table 2 and sketched
in Fig. 3. The shapes of each region are assumed for simplicity
of the elliptical. However, other geometric shapes such as the

circular one could take place for various applications.
Based on these consolidity patterns, the degree of sus-

ceptibility of the system to withstand the effect of changes in

system and input parameters can be evaluated. In fact,
Consolidity index is an important factor in scaling system
parameter changes when subjected to events or varying
environment. For instance, for all coming events at say event

state l which are ‘‘on and above’’ the system normal situation
or stand will lead to consecutive changes of parameters. Such
changes follow the general relationship at any event step l as:

D Parameter change l = Function [consolidity l, varying
environment or event l] [37,38]. Two important common cases
Please cite this article in press as: Gabr WI, A new approach for automatic control m
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in real life of such formulation are the linear (or linearized) and
the exponential relationship.

2.4. Implementation approach of consolidity theory to control
systems

2.4.1. Implementation approach for existing control systems

For the existing man-made or natural systems, the situation
could be complicated. The testing of these existing systems

could reveal the poor consolidity of such system. This is quite
expected as we previously used to build all existing systems
without considering the new concept of system consolidity.

For existing man-made systems, the situation could be possible
by altering parameters of the system within the utmost extent
permitted for changes. As for natural systems, the system
consolidity improvement matter could also be possible by

interfering within the system parameters together with
environment and trying to direct the physical process toward
better targeted consolidity.

For existing automatic control systems, they could be firstly
examined for their consolidity behavior. Based on the obtained
results, appropriate interventions are carried out for adjusting

one or more of system key parameters or possibly controlling
existing operating environment to attain improved consolidity
without jeopardizing their stability or performance. This inter-
fering approach for existing systems is illustrated in Fig. 4(a).

2.4.2. Implementation approach for new control systems design

For new automatic control systems design, the implementation

of consolidity theory is much simpler. The designers commence
using the conventional automatic control techniques leaving at
the end one or more flexible (or changeable) parameters that
consecutively be adjusted for preserving good system consolid-

ity behavior. Several designs could be developed and
then ranked within the framework of consolidity for selecting
the best choices that also fulfill acceptable degrees of

functionality.
The approach is also applicable for higher dimensional

automatic control as it is based mainly on matrix for-

mulations. For design analysis, conventional techniques are
first used leaving one or two parameters of flexible ranges.
The suggested consolidity technique can then be drawn by
varying these parameters to obtain an improved design from

the consolidity point of view.
In general, as the generation of these prototypes during the

design process is not completely exhaustive. The terms of

superior or inferior of consolidation remain as relative com-
parison. Such comparison is sufficient for all real-life applica-
tions as the system designers could follow later other cycles of

improvement to locate a new better superior system that sur-
mounts the old superior design. Such building approach for
new systems is elucidated in Fig. 4(b).

It is remarked that during implementation each problem
parameters should be addressed first as symbols and not be
substituted (with fuzziness defined as their pairs or shadows).
Conventional mathematics is then applied to the basic vari-

ables while the appropriate fuzzy algebra is implemented on
their corresponding pairs or shadows (fuzziness). Parameters
substitutions are made at the end step of solution leading to

the calculation of the consolidity factors as specified by the
problem analyst.
odeling, analysis and design in fully fuzzy environment, Ain Shams Eng J (2015),
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Table 2 Various classifications of system consolidity.

Ser. Class name Class

abbreviation

Description

1 Consolidated C All values of Consolidity

Index are less than 1, that

is FO=ðIþSÞ < 1

2 Quasi-

consolidated

~C A mixed system that is

clearly inclined more

toward consolidation such

as the center of gravity

(averaged value) has

FO=ðIþSÞ < 1

3 Neutrally

consolidated

N All values of Consolidity

Index are nearly 1, that is

FO=ðIþSÞ � 1

4 Mixed class M All values of Consolidity

Indices lie at both

Consolidated and

Unconsolidated zones,

FO=ðIþSÞ < and > 1

5 Quasi-

unconsolidated

~U A mixed system that is

clearly inclined more

toward un-consolidation

such as the center of

gravity (averaged value)

has FO=ðIþSÞ > 1

6 Unconsolidated U All values of Consolidity

Index are more than 1, that

is FO=ðIþSÞ > 1
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For complicated symbolic manipulations (and com-
putations) the use of Matlab Symbolic Toolbox, Mathematica

or similar like software libraries could be highly effective to fos-
ter the consolidity theory through conducting its necessary
derivations. This will enable the implementation of the consolid-

ity analysis to wider classes of linear, nonlinear, multivariable
and dynamic problems with different types of complexities.

2.5. Systems comparison based on the consolidity indices
implementation results

The first step in the design of any specific problem is to carry
out the consolidity indices of all various available scenarios.

These results are extracted from only one overall consolidity
index based on the design philosophy to be followed.
Examples of such design basis are given as

(i) Average consolidity scores: In this case, the average of all
scored consolidity indices for each scenario is calculated

and used solely for the selection of the most appropriate
consolidated design.

(ii) Weighted average consolidity scores: For the situations

where the possibility of the input and system fuzziness
is known, the weighted average values of the consolidity
by these given possibilities are calculated and the results
are used in the selection of design.

(iii) Worst consolidity scores: In this case, the worst score of
the consolidity index is chosen as an overall evaluation
index. This could be the maximum (or minimum) of

all scored indices if we are seeking the superior (or infer-
ior) consolidated design
Please cite this article in press as: Gabr WI, A new approach for automatic control mo
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Another in-depth direction of comparisons is through plot-
ting regions (patterns) of fuzziness behavior in the sketched
consolidity chart similar to the ones shown in Fig. 3. It could

appear from such figure that each consolidity region changes
from system to another and follows certain geometric shapes
such as the elliptical, circulars, or others. The geometric fea-

tures of each consolidity region can be characterized by the fol-
lowing features:
d

Symbol
eling, analysis
Description
R
 Type of consolidity region shape such as elliptical,

circular, or other shapes
S
 Slope or angle in degrees of the centerline of the

geometric shapes of the overall consolidity index

S(degrees) = tan�1(overall consolidity index)
C ¼ ðx; yÞ
 The centroid of the geometric shape expressed by its

horizontal coordinate per unit (pu) and the vertical

coordinate per unit
A
 Area of the geometric shape of R in pu2
l1
 Length of geometric (major) diagonal in direction of

slope of the consolidity region (pu)
l2
 Length of geometric (minor) diagonal in perpendicular

to the slope S of the consolidity region (pu)
l2=l1
 Diversity ratio of consolidity points (unitless)
The comparison or ranking of each consolidity region will
be based on less slope, less area and less diversity ratio

(l2=l1Þ. Moreover, the position of the centroid C ¼ ðx; yÞ
(upward or downward) within the geometric shape main cen-
terline depends mainly on the nature of the affected input

influences which are particular for each specific application.
Higher values of such centers mean higher fuzzy input effects
or influences. The above shown features of the consolidity

charts will be the basis of the analysis of the various applica-
tions given in the following sections of the paper.

3. Methodology implementation to automatic control systems

modeling

Consider the general differential equation [16]

dnx

dtn
þ an�1 �

dn�1x

dtn�1
þ � � � þ a1 �

dx

dt
þ a0 � x

¼ bn�1 �
dn�1u

dtn�1
þ � � � þ b1 �

du

dt
þ b0 � u . . . ð6Þ

where all the equation parameters are fuzzy numbers. These

fuzzy numbers are expressed by their deterministic values
and corresponding fuzzy level as described by the Arithmetic
fuzzy logic-based representation.

Define a set of state variables for a typical fuzzy control sys-
tem as follows:
_x1 ¼ x2

_x2 ¼ x3

..

. ..
.

_xn ¼ �a0 � x1 � � � � � an�1 � xn þ u

ð7Þ
and design in fully fuzzy environment, Ain Shams Eng J (2015),
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: Combined input and system factorF
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 “NUUnconsolidated “    “

MMixed Class “    “
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1l

Centroid

Area

2l

Angle

+

I+S

I+S

Fig. 3 The consolidity chart showing six different classes of system consolidity patterns (regions) as described in Table 2.
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system 

consolidity

√
χ

(Man-made)

(b) Approach for new systems design.

Testing consolidityExisting systems

Selecting the most 
appropriate  

system

Changing 
parameters or 
environment

Realization 
(Interfering into 
the system and 
environment)

Failed

Passed system consolidity
√

χ

(Natural or man-made)

(a) Approach for existing systems.

Fig. 4 Implementation approach of consolidity theory for both existing and new systems under design.
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and an output equation

y ¼ b00 � x1 þ b01 � x2 þ � � � þ b0n�1 � xn ð8Þ
Please cite this article in press as: Gabr WI, A new approach for automatic control m
http://dx.doi.org/10.1016/j.asej.2015.01.010
where b00 b01 b02 � � � b0n�1 are fuzzy coefficients.

Then, the state equation is expressed as
odeling, analysis and design in fully fuzzy environment, Ain Shams Eng J (2015),
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_x1

_x2

..

.

_xn�1

_xn

2
66666664

3
77777775
¼

0 1 0 � � � 0

0 0 1 � � � 0

..

.

0 0 0 � � � 1

�a0 �a1 �a2 � � � �an�1

2
6666664

3
7777775

x1

x2

..

.

xn�1

xn

2
66666664

3
77777775
þ

0

0

..

.

0

1

2
6666664

3
7777775
u ð9Þ

The state-space representation of (9) is denoted as the control-
lable canonical form. The output equation is

y ¼ b00 b01 b02 � � � b0n�1
� �

�

x1

x2

x3

..

.

xn

2
66666664

3
77777775

ð10Þ

Consider now the state vector differential equation

_x ¼ A � xþ B � u ð11Þ

Taking Laplace transforms of (11), we get

sXðsÞ � xð0Þ ¼ A � XðsÞ þ B �UðsÞ ð12Þ

or equivalently

ðs � I� AÞ � XðsÞ ¼ xð0Þ þ B �UðsÞ ð13Þ

Using a state variable representation of a system, the charac-

teristic equation is given by

jðs � I� AÞj ¼ 0 ð14Þ

This yields the characteristics (closed-loop form) equation
[16]:

an � sn þ an�1 � sn�1 þ � � � þ a1 � sþ a0 ¼ 0 ð15Þ

The general form of the above system can be expressed in
the form of system transfer function as

C

R
ðsÞ ¼ GðsÞ

1þ GðsÞ �HðsÞ

¼ Kc � ðs� zclÞ � ðs� zc2Þ . . . ðs� zcnÞ
ðs� pc1Þ � ðs� pc2Þ . . . ðs� pcnÞ

ð16Þ

where s ¼ pc1; pc2; . . . ; pcn are closed-loop fuzzy poles, since

their values make (16) infinite (also the roots of the character-
istic equation) and s ¼ zc1; zc2; . . . ; zcn are closed-loop fuzzy
zeros, since their corresponding values of (13) are zero.

We present now the handling of the general form of fuzzy
control system modeling and analysis using representative
examples of the fourth-order systems.

4. Methodology implementation to control systems fuzzy impulse

response

We demonstrate in this section how a fourth order system of
the transfer function as expressed by (16) can be handled in
a fully fuzzy environment where all the system coefficients
are expressed in the Arithmetic fuzzy logic-based representa-

tion form. Let us introduce this example that describes the
fuzzy response of a high-order control system operating in
fully fuzzy environment. We introduce the example in a gen-

eral form of fourth-order open-loop transfer function, as fol-
lows [16]:
Please cite this article in press as: Gabr WI, A new approach for automatic control mo
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X0ðsÞ ¼
a0

s � ðsþ b1Þ � ðs2 þ c1 � sþ c2Þ
ð17Þ

where a0; b1; c1 and c2 are fuzzy parameters.
Eq. (17) may be written using partial fraction representa-

tion as

X0ðsÞ ¼
A

s
þ B

sþ b1
þ C � sþD

ðsþ c1=2Þ2 þ c23
ð18Þ

where c3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � c21=4

p
;A;B;C;D, and c3 are fuzzy coeffi-

cients. Equating coefficient of (17), we get

ðs3Þ : 0 ¼ Aþ Bþ C

ðs2Þ : 0 ¼ A � ðb1 þ c1Þ þ B � c1 þ C � b1
ðs1Þ : 0 ¼ A � ðc2 þ b1 � c1Þ þ B � c2 þD � b1
ðs0Þ : a0 ¼ A � b1 � c2

ð19Þ

Using the Gaussian Elimination technique, the matrix

equation of (19) can be solved with its corresponding fuzzy
levels.

Illustrative example 1. As a numerical example, we choose the

value of fuzzy parameters as shown in Table 3. The results of
parameters A;B;C; andD are also shown in the same table.
Accordingly, the inverse Laplace transform of (19) can be
expressed as

X0ðtÞ ¼ A� B � e�b1�t � C � e�c1 �t=2½ðc4Þ2 � sin c3 � t� cos c3 � t�
ð20Þ

such that C4 ¼ D
C
� c1

2

� �
where A;B;C;D; b1; c1; c3, and C4 are

fuzzy parameters.

The consolidity pattern of the problem described by plot-
ting the overall output fuzziness factor jFOj versus input fuzzi-
ness factor jFIþSj is shown in Fig. 5. The impulse response
output solution pattern reveals slight unconsolidated dis-
tribution of the results, indicating relatively low susceptibility

of the optimal solution for change versus any system and input
parameters changes effect. Based on consolidity chart of
Fig. 5, it can be seen that the control system is almost consoli-
dated of class ‘‘C’’.

For the selected first four scenarios shown in Table 3, the
fuzzy levels of impulse responses are given also in Table 3
and Fig. 6. The equations were solved in Excel sheet with

built-in functions programmed using Visual Basic
Applications (VBAs). In the implementation procedure, the
exact values of fuzzy levels are preserved all over the cal-

culations and are rounded to integer values only at the final
result. It follows from the sketches of the impulse time
response of Fig. 6 and Table 4 that the fuzziness is related
to the time instant. The color of the response is an indication

of the fuzzy level using the color coding shown in
Table 5. Such colors are selected arbitrarily without restrict-
ing that corresponding positive and negative colors are con-

jugates (summation is either white or black). This is
equivalent to the Visual fuzzy logic-based representation
[24–27].

The analysis of the consolidity chart of the impulse response
problem of Illustrative example 1 shown in Fig. 5 can be sum-
marized as follows:
deling, analysis and design in fully fuzzy environment, Ain Shams Eng J (2015),
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Table 3 Consolidity analysis of the fuzzy impulse response of Illustrative example 1.

Type Parameter Value Fuzzy level scenarios

I II III IV V VI VII VIII IX

Input a0 12.5 3 1 �1 �3 1 4 4 3 5

b1 0.5 �3 �1 1 3 6 4 5 6 4

c1 1.0 �2 �2 2 2 4 4 �4 2 4

c2 25.0 3 1 �1 �3 3 6 3 5 6

Output A 1.000 3 1 �1 �3 �8 �6 �4 �8 �5
B �1.010 3 1 �1 �3 �8 �6 �4 �8 �5
C 0.010 �4 �4 4 4 �3 �4 �15 �9 �3
D �0.495 �6 0 0 6 �2 �2 1 �2 �1

Consolidity index value FO=ðIþSÞ
a 0.0185 0.0802 0.0802 0.0185 0.8298 0.3825 0.4096 0.4444 0.1823

a Average value of consolidity index FO=ðIþSÞ ¼ 0:2718.

Overall input fuzziness magnitude

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

7

10

O
ve

ra
ll 

ou
tp

ut
 fu

zz
in

es
s 

m
ag

ni
tu

de

Neu
tra

l c
on

so
lid

ate
d l

ine

Consolidated 
zone 

Unconsolidated  
zone

8

9

10

+Centroid 

Fig. 5 Consolidity chart of the impulse response problem of

Illustrative example 1.
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Results
R
 Shape type
 Elliptical
S
 Slope
 15.21�, or tan�1(0.27180)

C ¼ ðx; yÞ
 Centroid
 (3.8481,1.6203)
A
 Area of shape
 13.7414 pu2
l1
 Length of major diagonal
 6.9873 pu
l2
 Length of minor diagonal
 2.5316 pu
l2=l1
 Diversity ratio
 0.3623
The results indicate that the consolidity region has a very

low overall consolidity index and moderate diversity ratio.
The area of the consolidity region R is also moderate support-
ing the moderate diversity of calculated consolidity points.

Similar approaches can be applied for the fuzzy pulse

response of digital or discrete data control systems expressed
by their z-transform transfer functions [16,17].
w approach for automatic control m
5. Methodology implementation to fuzzy Routh–Hurwitz

stability criterion

The work of Routh and Hurwitz [16] gives a method of indi-
cating the presence and number of unstable roots, but not their
value. Consider the general form of characteristic equation

expressed by (14). The Routh–Hurwitz stability criterion states
that for there to be no roots with positive real parts it is a
necessary, but not sufficient, condition that all coefficients in
the characteristic equation have the same sign and that none

is zero. If the above is satisfied, then the necessary and suffi-
cient condition for stability is either

(a) All the Hurwitz determinants of the polynomial are
positive, or alternatively.

(b) All coefficients of the first column of Routh array have

the same sign. The number of sign changes indicates
the number of unstable roots.

The Hurwitz determinants of (15) can be expressed as fol-

lows [16]:

D1 ¼ a1 D2 ¼
a1 a3

a0 a2

����
����

D3 ¼
a1 a3 a5

a0 a2 a4

0 a1 a3

�������

�������
D4 ¼

a1 a3 a5 a7

a0 a2 a4 a6

0 a1 a3 a5

0 0 a2 a4

���������

���������

ð21Þ

. . ., etc., such that all parameters are expressed in the
Arithmetic fuzzy logic-based representation form. All the
above determinant operations are carried out following the

fuzzy logic-based algebra operations [29].

Illustrative example 2. Let us check the stability of the closed-
loop control system of Illustrative example 2, where the open-
loop transfer function is expressed in (17), and is having a

unity feedback. The closed-loop characteristic function can be
expressed as
s � ðsþ b1Þ � ðs2 þ c1 � sþ c2Þ þ a0 ¼ 0 ð22Þ

or equivalently
odeling, analysis and design in fully fuzzy environment, Ain Shams Eng J (2015),
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Fig. 6 Fuzzy impulse response using visual representation of

Illustrative example 1.

Table 4 System impulse response and corresponding fuzzy

levels of Illustrative example 1.

Ser. Time (s) X0ðtÞ Selected fuzzy levels scenarios

I II III IV

1 0.0 0.00000 0 0 0 0

2 1.0 0.38820 1 0 0 �1
3 2.0 0.62573 1 0 0 �1
4 3.0 0.77107 2 1 �1 �2
5 4.0 0.85999 2 1 �1 �2
6 5.0 0.91440 3 1 �1 �3
7 6.0 0.94768 3 1 �1 �3
8 7.0 0.96803 3 1 �1 �3
9 8.0 0.98047 3 1 �1 �3
10 9.0 0.98808 3 1 �1 �3
11 10.0 0.99273 3 1 �1 �3

A new approach for automatic control modeling, analysis and design in fully fuzzy environment 9
s4 þ ðc1 þ b1Þ � s3 þ ðc2 þ c1 � b1Þ � s2 þ c2 � b1 � sþ a0 ¼ 0 ð23Þ

where a0; b1; c1 and c2 are fuzzy parameters following the sce-
narios given in Table 6. Applying now the Routh–Hurwitz cri-
terion, we have first to test that all the coefficients are present

and have the same sign. The second test is to check the fuzzy
determinants D1;D2, and D3 for different scenarios.

The Hurwitz determinants for this numerical example can
be expressed as

D1 ¼ c2 � b1 ð24Þ

D2 ¼
c2 � b1 c1 þ b1

a1 c2 þ c1 � b1

����
���� ð25Þ
Please cite this article in press as: Gabr WI, A new approach for automatic control mo
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and

D3 ¼
c2 � b1 c1 þ b1 0

a1 c2 þ c1 � b1 1

0 c2 � b1 c1 þ b1

�������

�������
ð26Þ

The numerical results are shown for example in Table 6.

The Hurwitz determinants of the polynomial are all positive
with various level of fuzziness. The fuzzy levels of determinants
describe the level of uncertainty in the results. For different

scenarios, we will have same fuzzy results with opposite signs
of the fuzziness of the determinant of scenarios corresponding
with opposite input fuzzy data. This indicates the inverse prop-

erty of the Arithmetic fuzzy logic-based approach. Similar
approach can be applied for solving Jury stability criterion
of fuzzy discrete control systems expressed by the z-transform
characteristic equation of the sampled data system [16,17].

The consolidity pattern of the problem described by plot-
ting the overall output fuzziness factor jFOj versus input fuzzi-
ness factor jFIþSj is shown in Fig. 7. The solution pattern

reveals high unconsolidated distribution of the results, indicat-
ing high susceptibility of the Routh–Hurwitz stability criterion
for change versus any system and input parameters changes

effect. Based on consolidity chart of Fig. 7, it can be seen that
the control system is unconsolidated of class ‘‘U’’.

The analysis of the consolidity chart of the Routh–Hurwitz
stability criterion of Illustrative example 2 sketched in Fig. 7

can be summarized as follows:
d

Symbol
eling, analysis
Meaning
and design in fully fuzzy environm
Results
R
 Shape type
 Elliptical
S
 Slope
 74.54�, or tan�1 (3.6149)

C ¼ ðx; yÞ
 Centroid
 (1.9241,7.0886)
A
 Area of shape
 14.7669 pu2
l1
 Length of major diagonal
 6.1772 pu
l2
 Length of minor diagonal
 3.0379 pu
l2=l1
 Diversity ratio
 0.4918
The results reveal that the consolidity region has both mod-
erate overall consolidity index and diversity ratio. The area of

the consolidity region R is moderate supporting the moderate
diversity of calculated consolidity.
ent, Ain Shams Eng J (2015),
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Table 5 Definition of positive and negative color sample scales used in sketching Fig. 6.

Ser. Color Color code RBG color index Excel color index Corresponding fuzzy level Type

1 Violet (lavender) (255,0,255) 7 +6

Positive colors

2 Blue (0,102,204) 5 +5

3 Green (51,153,102) 50 +4

4 Violet (lavender light) (204,153,255) 39 +3

5 Blue light (153,204,255) 37 +2

6 Green light (204,255,204) 35 +1

7 Black (0,0,0) 2 0

8 Yellow light (255,255,204) 19 �1

Negative colors

9 Orange light (255,153,0) 45 �2

10 Red light (255,153,204) 38 �3

11 Yellow (255,255,0) 27 �4

12 Orange (255,102,0) 46 �5

13 Red (255,0,0) 3 �6

Table 6 Results of Routh–Hurwitz fuzzy determinants of Illustrative example 2.

Ser. Aspect Value Fuzzy level scenarios

I II III IV V VI VII VIII IX

1 a0 12.5 1 3 2 4 4 5 3 �4 �1
2 b1 0.5 3 1 4 1 2 1 �6 �3 �3
3 c1 1.0 1 3 3 3 2 2 1 �1 �2
4 c2 25.0 1 2 1 2 3 3 3 5 �2
5 D1j j 12.5 4 3 5 3 5 4 3 2 �5
6 D2j j 300.0 5 5 6 5 8 7 0 8 �7
7 D3j j 443.75 6 8 8 8 10 9 9 7 �9

Consolidity index FO=ðIþSÞ
a 5.7855 2.8442 5.6727 2.4726 2.8328 2.2539 1.9153 3.7299 4.9909

a Average value of consolidity index FO=ðIþSÞ ¼ 3:6149.
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6. Methodology implementation to control systems fuzzy

controllability and observability

A system is said to be controllable if a control vector uðtÞ exists
that will transfer the system from any initial state xðtoÞ to some
final state xðtÞ in a finite time interval.

A system is said to be observable if at time t0, the system
state xðt0Þ can be exactly determined from observation of the
output yðtÞ over a finite time interval.

If the system is described by

_x ¼ A � xþ B � u
y ¼ C � xþD � u

ð27Þ
Please cite this article in press as: Gabr WI, A new approach for automatic control m
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then a sufficient condition for complete state controllability is
that the n · n matrix [16]:

M ¼ ½B : A � B : . . . : An�1 � B� ð28Þ

contains n linearly independent row or column vectors, i.e. is

of rank n (that is, the matrix is non-singular, and the determi-
nant is non-zero). Eq. (28) designates the Controllability

matrix.

The system described by (28) is completely observable if the
n · n matrix is denoted as the Observability matrix [16]:

N ¼ ½CT : AT � CT : � � � : ðATÞn�1 � CT� ð29Þ

where all the system coefficients are expressed in the
Arithmetic fuzzy logic-based representation form.
odeling, analysis and design in fully fuzzy environment, Ain Shams Eng J (2015),
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Fig. 7 Consolidity chart of the Routh–Hurwitz stability

criterion of Illustrative example 2.
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Illustrative example 3. Consider the state space representation

of the closed-loop system of Illustrative example 3:
x�1
x�2
x�3

x�4

2
6664

3
7775 ¼

0 1 0 0

0 0 1 0

0 0 0 1

�a0 �a1 �a2 �a3

2
6664

3
7775

x1

x2

x3

x4

2
6664

3
7775þ

0

0

0

a

2
6664

3
7775u ð30Þ

and

y ¼ 0 0 0 b½ � �

x1

x2

x3

x4

2
6664

3
7775 ð31Þ

such that a1 ¼ c2 � b1; a2 ¼ c2 þ c1 � b1; a3 ¼ c1 þ b1 and a; b
are fuzzy parameters, where a ¼ 2 and b ¼ 1.
Table 7 Consolidity results controllability and observability matrix

Ser. Aspect Value Fuzzy level scenarios

I II III

1 a0 12.5 �1 6 3

2 a1 12.5 2 5 7

3 a2 25.0 3 2 4

4 a3 1.5 �2 4 2

5 a 2.0 �1 �2 2

6 b 1.0 2 �4 1

7 Mj j 16.0 �4 �8 8

Consolidity index value FO=ðIþSÞ
a 1.9765 3.9529 2.7769

8 Nj j �58.085 · 103 9 �8 9

Consolidity index value FO=ðIþSÞ
b 4.5515 4.1228 3.0586

a Average value of consolidity index FO=ðIþSÞ ¼ 2:6681.
b Average value of consolidity index FO=ðIþSÞ ¼ 2:7976.

Please cite this article in press as: Gabr WI, A new approach for automatic control mo
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Let us form the Controllability matrix M as

M ¼ ½B : A � B : A2 � B : A3 � B�

¼ a4

0 0 0 1

0 0 1 �a3

0 1 �a3 �a2 þ a23

1 �a3 �a2 þ a23 �a1 þ 2 � a2 � a3 � a33

2
666664

3
777775

ð32Þ

This yields the determinant of M ¼ a4 – 0, with fuzzy

level = 4 � ‘a. Thus the system is controllable. The fuzzy levels
of various scenarios are illustrated in Table 7. The results indi-
cate that for this example the fuzzy level of the controllability

matrix determinant is a function only of a4 and not related to
other system parameters fuzziness.

Applying the Observability Matrix criterion, we have

N¼ ½CT :AT �CT : ðATÞ2 �CT : ðATÞ3 �CT�

¼ b4

0 �a0 a0a3 a0 �a2�a0 �a23
0 �a1 �a0þa1 �a3 a0 �a3þa1 �a2�a1 �a23
0 �a2 �a1þa2 �a3 �a0þa1 �a3þa22�a2 �a23
1 �a3 �a2þa23 �a1þ2a2 �a3�a33

2
6664

3
7775
ð33Þ

The determinant of N – 0, thus the system is also observ-
able. The associated fuzzy levels of various scenarios are also
given in Table 7. It follows from the example that the fuzzy

level of the Observability matrix determinant is a function of

b4 and also related to the system parameter fuzziness. The
results indicate the existence of a relatively high fuzziness of

the Observability Matrix due to the fuzziness of the system’s
parameters.

The consolidity pattern of the controllability and observ-
ability problem of Illustrative example 3 is described by plot-

ting the output fuzziness factor jFOj versus input fuzziness
factor jFIþSj as shown in Figs. 8 and 9. Both charts reveal mod-
erately unconsolidated distribution of the results, indicating

relatively medium susceptibility of the both conditions for
change versus any system and input parameters changes effect.
Based on consolidity charts of Figs. 8 and 9, it can be seen that

the control system performance is unconsolidated of class ‘‘U’’
for both controllability and observability.
criteria of Illustrative example 3.

IV V VI VII VIII IX

5 8 5 3 6 3

4 7 3 9 3 10

2 3 2 5 1 5

2 3 4 2 3 2

2 2 1 2 �1 2

�3 �4 �1 1 �1 1

8 8 4 8 �4 8

3.6721 2.3579 2.0614 2.3093 2.6047 2.3014

�6 �7 4 8 3 8

2.7455 1.9272 1.8919 2.4194 2.0869 2.3749
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The analysis of the consolidity chart of the fuzzy system
controllability results of Illustrative example 3 sketched in
Fig. 8 can be summarized as follows:
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Fig. 9 Consolidity pattern of the fuzzy system observability

results of Illustrative example 3.
The results show that the consolidity region has a moderate
overall consolidity index and relatively high diversity ratio.
The area of the consolidity region is very high supporting

the high diversity of calculated consolidity points.
As for the consolidity chart of the fuzzy system observabil-

ity results of Illustrative example 3 delineated in Fig. 9, the
analysis can be summarized as follows:
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The results show that the consolidity region has a moderate
overall consolidity index and low diversity ratio. The area of
the consolidity region R is high supporting the spread of calcu-

lated consolidity points.
Similar approach can be applied for testing the fuzzy con-

trollability and observability of digital control systems

expressed by their discrete time state equations [16,17].

7. Methodology implementation to modeling and design of

inverted pendulum stabilization

In this section, the suggested approach is implemented for the
fuzzy modeling and stabilization of the inverted pendulum sys-

tem (to be referred to as Illustrative example 4) as shown in
Fig. 10. The inverted pendulum problem is an example of pro-
ducing a stable closed-loop control system from an unstable

plant. For this system, it is possible to design a controller using
the pole placement techniques [16].
Fig. 10 Sketch showing main parameters of the inverted

pendulum of Illustrative example 4.

odeling, analysis and design in fully fuzzy environment, Ain Shams Eng J (2015),
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(i) Case 1 (ii) Case 2 (iii) Case 3 (iv) Case 4 (v) Case 5 

MMM MM

Fig. 11 Various selected design prototypes of inverted pendulum of different manufacturing materials of Illustrative example 4 (Case 1:

M0 = 8, Case 2: M0 = 4, Case 3: M0 = 2, Case 4: M0 = 1, Case 5: M0 = 0.6).

Table 8 Consolidity analysis of inverted pendulum of Case 1: M0 = 8 of Illustrative example 4.

Type Parameter Value Corresponding fuzzy level values

I II III IV V VI VII VIII IX

Input L 1 2 2 4 3 2 3 4 3 4

m 0.5 3 4 3 5 2 6 5 3 7

a21 9.81 �2 �2 �4 �3 �2 �3 �4 �3 �4
a41 �3.27 �3 �4 �4 �5 �2 �6 �5 �3 �7
b2 �0.6667 �2 �2 �4 �3 �2 �3 �4 �3 �4
b4 0.8889 0 0 0 0 0 0 0 0 0

Output Mj j 0.007 �8 �8 �16 �11 �8 �11 �15 �12 �15
k1 �212.0 1 1 3 2 1 2 3 2 3

k2 282.7 1 0 1 1 1 1 1 1 1

k3 �412.7 2 2 4 3 2 3 4 3 3

k4 �1240.3 2 2 4 3 2 3 4 3 3

Consolidity index value FO=ðIþSÞ
a 3.4779 3.0220 4.4727 3.3121 4.0858 3.0220 3.7585 4.0858 3.2348

a Average value of consolidity index FO=ðIþSÞ ¼ 3:6080.
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In the figure, m is the mass of pendulum, L denotes the half-

length of the pendulum and M0 is the mass of the trolley. The
parameter FðtÞ indicates the applied force to the trolley in the

x-direction.

It is assumed that h is small and the second-order terms ð _h2Þ
can be neglected, then we can define the state variables of the
inverted pendulum system as (g ¼ 9:81)

x1 ¼ h; x2 ¼ _h; x3 ¼ x and x4 ¼ _x ð34Þ

and the control variable is

u ¼ FðtÞ ð35Þ

From (34) and (35), the state equations become

_x1

_x2

_x3

_x4

2
6664

3
7775 ¼

0 1 0 0

a21 0 0 0

0 0 0 1

a41 0 0 0

2
6664

3
7775

x1

x2

x3

x4

2
6664

3
7775þ

0

b2

0

b4

2
6664

3
7775u ð36Þ

where
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a21 ¼
3 � g � ðM0 þmÞ

L � 4 � M0 þmð Þ � 3 �m½ �

a41 ¼
�3g �m

4 � M0 þmð Þ � 3 �m

b2 ¼
�3

L � 4 � M0 þmð Þ � 3 �m½ �

b4 ¼
1

M0 þm

� 	
� 1þ 3 �m

4 � M0 þmð Þ � 3 �m


 �
ð37Þ

M ¼

0 b2 0 a21 � b2
b2 0 a21 � b2 0

0 b4 0 a41 � b2
b4 0 a41 � b2 0

2
6664

3
7775 ð38Þ

Data for simulation are represented in Table 8 for different
selected scenarios. The output equation is

y ¼ C � x ð39Þ

where C is the identity matrix. For a regulator, with a scalar
control variable and gain vector K, we have

u ¼ �K � x ð40Þ
deling, analysis and design in fully fuzzy environment, Ain Shams Eng J (2015),

http://dx.doi.org/10.1016/j.asej.2015.01.010


Overall input fuzziness magnitude

0

1

2

3

4

5

1 2 3 4 5

O
ve

ra
ll 

ou
tp

ut
 fu

zz
in

es
s 

m
ag

ni
tu

de
Neu

tra
l c

on
so

lid
ate

d l
ine

Consolidated 
zone 

Unconsolidated  
zone

Case 1
Case 2
Case 3
Case 4
Case 5

+ + + +
+

1
2 3

4

5

Fig. 12 Consolidity patterns of the fuzzy inverted pendulum designs of Illustrative example 4.
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The elements of K can be obtained by selecting a set of

desired closed-loop poles by the Ackermann’s formula [16]
for system stabilization through the pole placement technique.
Let

K ¼ 0 0 0 � � � 1½ � �M�1 � /ðAÞ ð41Þ

where M is the Controllability matrix and

/ðAÞ ¼ An þ an�1 � An�1 þ � � � þ a1 � Aþ a0 � I ð42Þ

where A is the system matrix and ai represent the coefficients of
the desired closed-loop characteristic equation.

If the required closed-loop poles are s ¼ �2� j2 for the
pendulum, and s ¼ �4� j4 for the trolley, then the closed-
loop characteristic equation becomes

s4 þ 12s3 þ 72s2 þ 192sþ 256 ¼ 0 ð43Þ

The algebraic form of the fuzzy gain result can be expressed as
follows: let
Symbol Results of various designs of M0

8.0 4.0 2.0

R Elliptical Elliptical Elliptica

S 74.51� or tan�1 (3.6080) 63.96� or tan�1 (2.0467) 51.42� o

C ¼ ðx; yÞ (0.5250,1.9250) (0.8500,1.8400) (1.4500,

A(pu2) 1.2500 1.2750 1.6500

l1(pu) 1.9500 1.9500 2.2000

l2 0.8000 0.8500 0.9500

l2=l1 0.4103 0.4359 0.4318
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b1 b2 b3 b4½ � ¼ 0 0 0 1½ �M�1 ð44Þ

then we can attain by simple matrix operation the following
fuzzy values of the gain vector K:

k1 ¼ b1 � ao þ a2 � a21 þ a4 � a221
� �

þ b2 a2 � a41 þ a4 � a21 � a41ð Þ ð45Þ

k2 ¼ b1 � a1 þ a3 � a21ð Þ þ b3 � a3 � a41 ð46Þ

k3 ¼ b3 � a0 ð47Þ

and

k4 ¼ b3 � a1 ð48Þ

For design purposes, various prototypes of the inverted
pendulum can be selected with different relative trolley and

pendulum masses of different manufacturing materials and
with gain vector K satisfying the same stabilized characteristics
1.0 0.6

l Elliptical Elliptical

r tan�1 (1.2534) 39.60� or tan�1 (0.8274) 32.23� or tan�1 (0.6305)

1.8450) (2.0750,1.5000) (2.5000,1.5000)

2.2750 2.5000

2.4000 2.5500

1.2000 1.2500

0.5000 0.4902
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function of (34). The most desired robust design can be
attained that achieves the best consolidity performance. In this

respect, five different designs of trolley car massesM0 of 8, 4, 2,
1 and 0.6 respectively are selected as shown in Fig. 11.

For each design, the consolidity analysis is applied and the

result is shown in Table 8 for Case 1 of M0 = 8 and sketched
all the three cases in Fig. 12. From this figure, it appears that
the consolidity pattern of the inverted pendulum improves

with the reduction of the trolley car mass M0 and the best

consolidity performance is obtained for the fifth design case

with M0 = 0.6. The analysis of the consolidity chart of the

fuzzy inverted pendulum of various selected designs of illustra-
tive example 4 delineated in Fig. 12 can be summarized as
follows:

It follows from the above table that reducing the trolley
weight the system overall consolidity is improved but is accom-
panied with increase of the consolidity region areas. In general,

the diversity ratio is high indicating high diversity of calculated
consolidity points. The areas of the regions are in general very
small compared to all previous illustrative examples (A> 13).

Such charts of Fig. 12 clearly demonstrate the effectiveness of
the proposed approach as a tool for the analysis and design of
automatic control systems.

8. Conclusions

A new approach for the fuzzy automatic control systems’ mod-
eling and analysis using the consolidity theory was presented.

Key implementations issues in fuzzy automatic control and
dynamical systems were addressed in a very smooth and sys-
tematic way. These issues covered system’s fuzzy impulse

response, system’s stability using Routh–Hurwitz criterion,
system’s Controllability and Observability, and the stabiliza-
tion of inverted pendulum through the pole placement tech-

nique. Illustrative examples of fourth-order systems were
solved to demonstrate the effectiveness and applicability of
the new technique. The approach is also suitable for higher

dimensional automatic control and dynamical systems as it is
based mainly on matrix formulations.

Implementation procedures were elaborated for the
consolidity analysis of existing control systems and the design

of new ones. Systems comparisons based on such imple-
mentation consolidity results were discussed based on the val-
ues of the average, weighted or worst consolidity scores, or the

comparison of the plotted regions (patterns) of fuzziness
behavior in the sketched consolidity chart. It is shown that
the regions comparison in consolidity chart is based on type

of consolidity region shape, slope or angle in degrees of the
centerline of the geometric shape, the centroid of the geometric
shape, area of the geometric shape, length of principal diago-

nals of the shape, and the diversity ratio of consolidity points
for each region.

The suggested approach could open the door for more gen-
eral modeling, analysis and design of both continuous and digi-

tal data automatic control systems. Moreover, it provides an
effective tool for designing new control systems that could
withstand future changes due to any system or input parame-

ters changes effects on and above normal systems operations
or set points. Examples of some foreseen extensions are as
follows:
Please cite this article in press as: Gabr WI, A new approach for automatic control mo
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(i) Design of Fuzzy P, PI, PD, and PID control systems.

(ii) State-space methods for fuzzy automatic control system
analysis and design.

(iii) Design of fuzzy state observers and estimators for

closed-loop systems.
(iv) Optimal and robust fuzzy control of multivariate

systems.
(v) Other problems such as multivariate fuzzy Kalman state

estimation, fuzzy linear quadratic regulators, and fuzzy
Lyapunov stability criterion.

It was shown that the presented consolidity methodology
is open in its application to wide classes of systems. Even for
the system that thought not to be fuzzy, we can still imagine

that these systems are operating in a fully fuzzy environment
and perform typically the same consolidity testing. Its
needless to say that all the present physical systems in our
daily life are subject to continuous wearing and deterioration

that make them gradually changing, and thus will behave
later equivalently as if they are operating in a fuzzy environ-
ment. This makes the presented consolidity chart approach

generally extendable to wider spectrum of real-life applica-
tions beside that given in the automatic control fields.
Examples of these fields are geology, archeology, life sciences,

ecology, environmental science, engineering, materials,
medicine, biology, sociology, humanities, and many other
important fields.
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